login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303259
Number of ordered rooted trees with n non-root nodes such that the maximal outdegree equals ceiling(n/2).
3
1, 1, 1, 3, 8, 15, 53, 84, 326, 495, 1997, 3003, 12370, 18564, 77513, 116280, 490306, 735471, 3124541, 4686825, 20030000, 30045015, 129024469, 193536720, 834451788, 1251677700, 5414950283, 8122425444, 35240152706, 52860229080, 229911617041, 344867425584
OFFSET
0,4
LINKS
FORMULA
a(n) = A203717(n,ceiling(n/2)).
MAPLE
b:= proc(u, o, k) option remember; `if`(u+o=0, 1,
add(b(u-j, o+j-1, k), j=1..min(1, u))+
add(b(u+j-1, o-j, k), j=1..min(k, o)))
end:
a:= n-> `if`(n=0, 1, (j-> b(0, n, j)-b(0, n, j-1))(ceil(n/2))):
seq(a(n), n=0..35);
MATHEMATICA
b[u_, o_, k_] := b[u, o, k] = If[u + o == 0, 1,
Sum[b[u - j, o + j - 1, k], {j, 1, Min[1, u]}] +
Sum[b[u + j - 1, o - j, k], {j, 1, Min[k, o]}]];
a[n_] := If[n == 0, 1, With[{j = Ceiling[n/2]}, b[0, n, j]-b[0, n, j-1]]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 19 2022, after Alois P. Heinz *)
CROSSREFS
Bisections give: A291662 (even part), A005809 (odd part).
Cf. A203717.
Sequence in context: A369983 A216466 A376231 * A192167 A065500 A120341
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 20 2018
STATUS
approved