login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303255 "Wondrous representation" [left to right] of positive integer n, n >= 2. 2
2, 2222121, 22, 22221, 22221212, 2222122212212121, 222, 2222122212212121221, 222212, 22221222122121, 222212122, 222212221, 22221222122121212, 22221222221212121, 2222, 222212221221, 22221222122121212212, 22221222122121222121, 2222122, 2222221, 222212221221212 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,1

COMMENTS

Start with k = 1; left to right "digits": 2 means k <= 2k, 1 means k <= (k-1)/3. (1 has the empty "wondrous representation," since it is "wondrous" by definition ... although, for a nonempty representation, we could [in a kludgy way] represent 1 using the trivial cycle: 221.)

"Wondrous numbers" (Hofstadter, 1979, pp. 400-401) are positive integers with a Collatz trajectory that eventually reaches 1.

According to the Collatz conjecture, every positive integer is "wondrous" (none is "unwondrous"). Thus, every positive integer n >= 2 is conjectured to have a "wondrous representation," which is then unique.

Reading the "digits" right to left gives the Collatz trajectory of n, n >= 2. Start with n; right to left "digits": 2 means k <= k/2, 1 means k <= 3k+1.

For a representation to be well-formed, we can only append a "digit" 1 if the number reached to the left is congruent to 4 (mod 6), yielding an odd number after appending 1. We can append "digit" 2 without any restriction. Thus a(n) is odd iff it ends with 1.

REFERENCES

Douglas R. Hofstadter, "Gödel, Escher, Bach: an Eternal Golden Braid." New York: Basic Books, 1979.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 2..1000

EXAMPLE

a(3) = 2222121: [left to right] (1) => 2 => 4 => 8 => 16 => 5 => 10 => 3.

PROG

(PARI) a(n)={my(L=List()); while(n<>1, listput(L, 2-n%2); n=if(n%2, n*3+1, n/2)); fromdigits(Vecrev(L))} \\ Andrew Howroyd, Apr 27 2020

CROSSREFS

"Wondrous representation" [right to left]: A303433.

Sequence in context: A253264 A124368 A272238 * A322096 A037051 A283072

Adjacent sequences: A303252 A303253 A303254 * A303256 A303257 A303258

KEYWORD

nonn

AUTHOR

Daniel Forgues, Apr 24 2018

EXTENSIONS

Terms a(18) and beyond from Andrew Howroyd, Apr 27 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 3 14:58 EST 2023. Contains 360035 sequences. (Running on oeis4.)