login
A303254
T(n,k) = Number of n X k 0..1 arrays with every element equal to 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
10
0, 1, 0, 1, 3, 0, 2, 14, 11, 0, 3, 45, 49, 34, 0, 5, 146, 203, 250, 111, 0, 8, 537, 955, 1401, 1183, 361, 0, 13, 1934, 4556, 10264, 8664, 5918, 1172, 0, 21, 6861, 21843, 78679, 106803, 55624, 28680, 3809, 0, 34, 24386, 103319, 584333, 1218385, 1105676, 349273
OFFSET
1,5
COMMENTS
Table starts
.0.....1......1........2..........3...........5.............8..............13
.0.....3.....14.......45........146.........537..........1934............6861
.0....11.....49......203........955........4556.........21843..........103319
.0....34....250.....1401......10264.......78679........584333.........4330427
.0...111...1183.....8664.....106803.....1218385......13529019.......153269484
.0...361...5918....55624....1105676....19457754.....322544617......5622650429
.0..1172..28680...349273...11394429...306224454....7600681910....204093228252
.0..3809.141255..2229806..118856245..4895684572..181926316054...7516309079483
.0.12377.691968.14141138.1230109648.77683246701.4319287740641.274539947294004
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 14]
k=4: [order 43] for n>44
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) +3*a(n-2) +6*a(n-3) +10*a(n-4) +4*a(n-5) for n>6
n=3: [order 19] for n>21
n=4: [order 63] for n>66
EXAMPLE
Some solutions for n=5, k=4
..0..0..1..1. .0..1..0..0. .0..1..0..0. .0..0..1..1. .0..0..1..0
..1..1..0..1. .1..0..0..0. .0..0..1..1. .0..1..0..0. .0..1..0..1
..1..0..0..0. .1..0..1..0. .0..1..0..0. .1..0..0..1. .0..0..1..1
..0..1..1..0. .0..1..1..1. .1..1..0..1. .1..1..1..1. .1..0..1..0
..0..0..0..1. .0..0..0..1. .1..0..1..1. .0..0..0..0. .0..1..0..1
CROSSREFS
Column 2 is A180762.
Row 1 is A000045(n-1).
Row 2 is A302225.
Row 3 is A302473.
Row 4 is A302474.
Sequence in context: A302224 A302670 A302472 * A256068 A302381 A303102
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 20 2018
STATUS
approved