login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303016
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
12
1, 2, 2, 4, 8, 4, 8, 20, 25, 8, 16, 52, 68, 81, 16, 32, 136, 187, 308, 264, 32, 64, 360, 579, 1047, 1320, 857, 64, 128, 960, 1797, 4237, 5299, 5220, 2785, 128, 256, 2576, 5571, 18513, 27719, 24030, 22652, 9050, 256, 512, 6944, 17382, 79945, 166978, 160253
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4.......8.......16........32..........64..........128
...2.....8.....20......52......136.......360.........960.........2576
...4....25.....68.....187......579......1797........5571........17382
...8....81....308....1047.....4237.....18513.......79945.......344190
..16...264...1320....5299....27719....166978......970892......5570473
..32...857...5220...24030...160253...1298140.....9976891.....75234550
..64..2785..22652..123538..1044810..11644063...121524556...1219773362
.128..9050..95220..612923..6647878.101648313..1423906011..18974341664
.256.29407.390580.2935811.40950485.858924912.16163776349.285987277414
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 10]
k=4: [order 43] for n>44
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) for n>4
n=3: [order 15] for n>16
n=4: [order 62] for n>64
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1
..0..1..0..1. .1..1..1..1. .1..1..0..1. .0..0..1..1. .0..0..0..1
..0..1..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0. .1..0..1..1
..0..1..1..0. .1..1..1..1. .1..1..0..1. .1..1..0..0. .0..1..0..1
..0..1..0..1. .0..1..0..0. .1..1..0..1. .0..1..1..0. .0..1..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A240478.
Row 1 is A000079(n-1).
Row 2 is A302323.
Sequence in context: A302415 A303182 A302322 * A302820 A303513 A303727
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 17 2018
STATUS
approved