login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A302820
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 2, 4 or 5 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
12
1, 2, 2, 4, 8, 4, 8, 20, 25, 8, 16, 52, 75, 81, 16, 32, 136, 220, 389, 264, 32, 64, 360, 731, 1494, 1852, 857, 64, 128, 960, 2419, 6905, 9050, 8485, 2785, 128, 256, 2576, 7900, 34957, 57684, 51476, 41247, 9050, 256, 512, 6944, 25645, 170262, 455224, 454733
OFFSET
1,2
COMMENTS
Table starts
...1.....2......4........8........16..........32...........64............128
...2.....8.....20.......52.......136.........360..........960...........2576
...4....25.....75......220.......731........2419.........7900..........25645
...8....81....389.....1494......6905.......34957.......170262.........800847
..16...264...1852.....9050.....57684......455224......3252934.......21373833
..32...857...8485....51476....454733.....5520999.....58122740......535479917
..64..2785..41247...317216...3825201....72576189...1135257814....14619284475
.128..9050.196946..1927184..32123578...960564532..22294687742...402121386052
.256.29407.931243.11448173.264639685.12417289008.427140472935.10807066934912
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) +a(n-2) -2*a(n-4)
k=3: [order 14]
k=4: [order 49] for n>51
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: a(n) = 4*a(n-1) -2*a(n-2) -4*a(n-3) for n>4
n=3: [order 15] for n>16
n=4: [order 67] for n>68
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..0. .0..1..0..1
..0..1..1..1. .1..1..1..1. .1..0..1..0. .1..0..0..0. .0..0..0..1
..0..1..0..1. .1..0..1..1. .1..1..1..1. .1..1..1..0. .1..0..1..1
..0..0..0..1. .1..1..0..1. .0..1..0..1. .1..0..1..0. .1..1..1..1
..1..1..1..0. .1..1..0..1. .0..1..0..0. .0..0..0..0. .0..1..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A240478.
Row 1 is A000079(n-1).
Row 2 is A302323.
Sequence in context: A303182 A302322 A303016 * A303513 A303727 A305230
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Apr 13 2018
STATUS
approved