login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302978
Chromatic invariant of the n-path complement graph.
1
1, 2, -1, 0, 1, 5, 28, 182, 1350, 11274, 104856, 1076064, 12086760, 147561000, 1946180160, 27582811920, 418131670320, 6751768862160, 115707685968000, 2097617321963520, 40108223054148480, 806736096940072320, 17028466642305216000, 376369075678811040000
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Chromatic Invariant
Eric Weisstein's World of Mathematics, Path Complement Graph
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*(-1)^k*(n-k-2)! for n > 3. - Andrew Howroyd, Apr 22 2018
a(n) = ((2*n + 3)*a(n + 1) - (n + 5)*a(n + 2) + a(n + 3))/n for n > 2. - Eric W. Weisstein, Apr 23 2018
a(n) ~ exp(-1) * n! / n^2. - Vaclav Kotesovec, Apr 23 2018
MATHEMATICA
Join[{1, 2}, Table[Sum[Binomial[n - k, k] (-1)^k (n - k - 2)!, {k, 0, Floor[n/2]}], {n, 3, 20}]]
Join[{1, 2}, Table[Gamma[n - 1] HypergeometricPFQ[{1/2 - n/2, -n/2}, {2 - n, -n}, -4], {n, 3, 20}]]
Join[{1, 2}, RecurrenceTable[{-n a[n] + (3 + 2 n) a[1 + n] + (-5 - n) a[2 + n] + a[3 + n] == 0, a[1] == -1, a[2] == 0, a[3] == 1}, a, {n, 20}]]
PROG
(PARI) a(n)={if(n<4, [1, 2, -1][n], sum(k=0, n\2, binomial(n-k, k)*(-1)^k*(n-k-2)!))} \\ Andrew Howroyd, Apr 22 2018
CROSSREFS
Sequence in context: A275514 A180782 A213597 * A108723 A291584 A352451
KEYWORD
sign
AUTHOR
Eric W. Weisstein, Apr 16 2018
EXTENSIONS
Terms a(17) and beyond from Andrew Howroyd, Apr 22 2018
STATUS
approved