OFFSET
0,7
COMMENTS
T(n,0)=A061547(n). Sum of row n is 2^(n-1) (n>=1).
FORMULA
T(n, 0)=(3/8)2^n + (1/24)(-2)^n - 2/3; T(n, n)=1; T(n, k)=2^(n-k-2) if k>0 and n-k is even; T(n, k)=0 if k>0 and n-k is odd or if k>n.
EXAMPLE
T(3,0)=2 because we have (23)(1) and (3)(12); T(3,1)=1 because we have (3)(2)(1); T(3,3)=1 because we have (123) (the ascending runs are shown between parentheses).
Triangle begins:
1;
0,1;
1,0,1;
2,1,0,1;
6,0,1,0,1;
10,4,0,1,0,1;
MAPLE
T:=proc(n, k) if k=n then 1 elif k>n then 0 elif k=0 then 3*2^n/8+(-2)^n/24-2/3 elif k>0 and n-k mod 2 = 0 then 2^(n-k-2) else 0 fi end: for n from 0 to 13 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := Which[k == n, 1, k > n, 0, k == 0, 3*2^n/8 + (-2)^n/24 - 2/3, k > 0 && EvenQ[n-k], 2^(n-k-2), True, 0];
Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2024, after Maple program *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 21 2005
STATUS
approved