login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n+1)*(n^4-4*n^3+11*n^2-8*n+12)/12.
5

%I #25 Jul 12 2018 00:47:46

%S 1,2,6,20,65,186,462,1016,2025,3730,6446,10572,16601,25130,36870,

%T 52656,73457,100386,134710,177860,231441,297242,377246,473640,588825,

%U 725426,886302,1074556,1293545,1546890,1838486,2172512,2553441,2986050,3475430,4026996

%N a(n) = (n+1)*(n^4-4*n^3+11*n^2-8*n+12)/12.

%C The limit as q->1^- of the unimodal polynomial [q^(n*k+n+4)-q^(n*k+n+3)+q^(n*k+n+1)-q^(n*k+4)-q^((n-1)*k+n+3)+q^((n-1)*k+3)+q^(k+n+1)-q^(k+1)-q^n+q^3-q+1]/[(1-q)^2(1-q^2)(1-q^n)] after making the simplification k=n. This unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <=2. See G_2(n,k) from arXiv:1711.11252.

%C As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984.

%H Colin Barker, <a href="/A302612/b302612.txt">Table of n, a(n) for n = 0..1000</a>

%H Bryan Ek, <a href="https://arxiv.org/abs/1711.11252">q-Binomials and related symmetric unimodal polynomials</a>, arXiv:1711.11252 [math.CO], 2017-2018.

%H Bryan Ek, <a href="https://arxiv.org/abs/1804.05933">Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics</a>, arXiv:1804.05933 [math.CO], 2018.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F From _Colin Barker_, Apr 11 2018: (Start)

%F G.f.: (1 - 4*x + 9*x^2 - 6*x^3 + 10*x^4) / (1 - x)^6.

%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.

%F (End)

%e For n=4, G_2(4,4)=q^16+q^15+2*q^14+3*q^13+5*q^12+5*q^11+6*q^10+6*q^9+7*q^8+6*q^7+6*q^6+5*q^5+5*q^4+3*q^3+2*q^2+q+1 (using the formula in the comments). Then substituting q=1 yields 65.

%o (PARI) Vec((1 - 4*x + 9*x^2 - 6*x^3 + 10*x^4) / (1 - x)^6 + O(x^40)) \\ _Colin Barker_, Apr 11 2018

%Y Cf. A000984, A002522, A302644, A302645, A302646.

%K nonn,easy

%O 0,2

%A _Bryan T. Ek_, Apr 10 2018

%E More terms from _Colin Barker_, Apr 11 2018