login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302609
a(n) = n! * [x^n] exp(n*x)*arctanh(x).
4
0, 1, 4, 29, 288, 3649, 56160, 1017029, 21181440, 498682881, 13095232000, 379443829709, 12025239367680, 413761766695809, 15360425115176960, 611958601019294325, 26042588632355176448, 1179009749826940037889, 56579126414696034729984, 2868848293506101088635389
OFFSET
0,3
LINKS
N. J. A. Sloane, Transforms
FORMULA
E.g.f.: log((1 - LambertW(-x))/(1 + LambertW(-x))) / (2*(1 + LambertW(-x))). - Vaclav Kotesovec, Jun 09 2019
a(n) ~ log(n) * n^n / 4 * (1 + (gamma + 3*log(2))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 09 2019
a(n) = Sum_{k=1..n} binomial(n,k)*(k-1)!*n^(n-k)*(1-(-1)^k)/2. - Fabian Pereyra, Oct 05 2024
MATHEMATICA
Table[n! SeriesCoefficient[Exp[n x] ArcTanh[x], {x, 0, n}], {n, 0, 19}]
nmax = 20; CoefficientList[Series[Log[(1 - LambertW[-x])/(1 + LambertW[-x])] / (2*(1 + LambertW[-x])), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 09 2019 *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 10 2018
STATUS
approved