login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A302256
Hyper-Wiener index of rows of unit cells on the face-centered cubic lattice.
1
213, 942, 2956, 7326, 15447, 29038, 50142, 81126, 124681, 183822, 261888, 362542, 489771, 647886, 841522, 1075638, 1355517, 1686766, 2075316, 2527422, 3049663, 3648942, 4332486, 5107846, 5982897, 6965838, 8065192, 9289806, 10648851, 12151822
OFFSET
1,1
COMMENTS
This sequence is related to the Wiener-index of the FCC grid (cf. A273322). Now the second order distances are also counted (see definition of Hyper-Wiener index).
LINKS
Hamzeh Mujahed, Benedek Nagy: Exact Formula for Computing the Hyper-Wiener Index on Rows of Unit Cells of the Face-Centred Cubic Lattice, Analele Universitatii "Ovidius" Constanta - Seria Matematica 26/1 (2018), 169-187.
FORMULA
a(n) = (81*n^4+261*n^3+264*n^2+540*n+132)/6. Proved in the Hamzeh Mujahed - Benedek Nagy paper.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5); with a(1)=213, a(2)=942, a(3)=2956, a(4)=7326 and a(5)=15447.
G.f.: x*(213 - 123*x + 376*x^2 - 164*x^3 + 22*x^4) / (1 - x)^5. - Colin Barker, Jun 11 2018
MATHEMATICA
Table[(81*n^4 + 261*n^3 + 264*n^2 + 540*n + 132)/6, {n, 30}] (* Wesley Ivan Hurt, Jan 20 2024 *)
PROG
(PARI) a(n) = (81*n^4+261*n^3+264*n^2+540*n+132)/6; \\ Altug Alkan, Apr 04 2018
(PARI) Vec(x*(213 - 123*x + 376*x^2 - 164*x^3 + 22*x^4) / (1 - x)^5 + O(x^40)) \\ Colin Barker, Jun 11 2018
CROSSREFS
Cf. A273322.
Sequence in context: A251146 A085309 A252024 * A092127 A082967 A212312
KEYWORD
nonn,easy
AUTHOR
Benedek Nagy, Apr 04 2018
EXTENSIONS
a(5) corrected by Altug Alkan, Apr 04 2018
STATUS
approved