login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302087 Numbers k such that k^2+1 and (k+6)^2+1 are both prime. 2
4, 10, 14, 20, 84, 110, 120, 124, 150, 170, 204, 224, 230, 250, 264, 300, 400, 430, 464, 490, 570, 674, 680, 690, 930, 960, 1004, 1054, 1060, 1140, 1144, 1150, 1314, 1410, 1434, 1550, 1564, 1570, 1580, 1654, 1784, 1870, 1964, 1974, 2050, 2074, 2080, 2120, 2260, 2304, 2314 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
MAPLE
select(k->isprime(k^2+1) and isprime((k+6)^2+1), [$1..3000]); # Muniru A Asiru, Apr 02 2018
MATHEMATICA
Select[Range[3000], PrimeQ[#^2 + 1] && PrimeQ[(# + 6)^2 + 1]&] (* Vincenzo Librandi, Apr 02 2018 *)
PROG
(Python)
from sympy import isprime
k, klist, A302087_list = 0, [isprime(i**2+1) for i in range(6)], []
while len(A302087_list) < 10000:
i = isprime((k+6)**2+1)
if klist[0] and i:
A302087_list.append(k)
k += 1
klist = klist[1:] + [i] # Chai Wah Wu, Apr 01 2018
(Magma) [n: n in [1..2500] | IsPrime(n^2+1) and IsPrime((n+6)^2+1)]; // Vincenzo Librandi, Apr 02 2018
(PARI) isok(k) = isprime(k^2+1) && isprime((k+6)^2+1); \\ Altug Alkan, Apr 02 2018
CROSSREFS
Sequence in context: A310422 A310423 A114335 * A329103 A099355 A161366
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 31 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:25 EST 2023. Contains 367593 sequences. (Running on oeis4.)