login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301916
Primes which divide numbers of the form 3^k + 1.
6
2, 5, 7, 17, 19, 29, 31, 37, 41, 43, 53, 61, 67, 73, 79, 89, 97, 101, 103, 113, 127, 137, 139, 149, 151, 157, 163, 173, 193, 197, 199, 211, 223, 233, 241, 257, 269, 271, 281, 283, 293, 307, 317, 331, 337, 349, 353, 367, 373, 379, 389, 397, 401, 409, 439
OFFSET
1,1
COMMENTS
This sequence can be used to factor P-1 values for prime candidates of the form 3^k+2, to aid with primality testing.
a(1) = 2 divides every number of the form 3^k+1. It is the only term with this property.
For k > 2, A000040(k) is a member if and only if A062117(k) is even. - Robert Israel, May 23 2018
LINKS
EXAMPLE
Every value of 3^k+1 is an even number, so 2 is in the sequence.
No values of 3^k+1 is ever a multiple of 3 for any integer k, so 3 is not in the sequence.
3^2+1 = 10, which is a multiple of 5, so 5 is in the sequence.
MAPLE
f:= p -> numtheory:-order(3, p)::even:
f(2):= true:
select(isprime and f, [2, seq(p, p=5..1000, 2)]); # Robert Israel, May 23 2018
MATHEMATICA
Join[{2}, Select[Range[5, 1000, 2], PrimeQ[#] && EvenQ@ MultiplicativeOrder[3, #]&]] (* Jean-François Alcover, Feb 02 2023 *)
PROG
(PARI) isok(p)=if (p != 3, m = Mod(3, p); nb = znorder(m); for (k=1, nb, if (m^k == Mod(-1, p), return(1)); ); ); return(0); \\ Michel Marcus, May 18 2018
(PARI) list(lim)=my(v=List([2]), t); forfactored(n=4, lim\1+1, if(n[2][, 2]==[1]~, my(p=n[1], m=Mod(3, p)); for(k=2, znorder(m, t), m*=3; if(m==-1, listput(v, p); break))); t=n); Vec(v) \\ Charles R Greathouse IV, May 23 2018
(PARI) isok(p)=isprime(p)&&if(p<4, p==2, znorder(Mod(3, p))%2==0) \\ Jeppe Stig Nielsen, Jun 27 2020
(PARI) isok(p)=!isprime(p)&&return(0); p<4&&return(p==2); s=valuation(p-1, 2); Mod(3, p)^((p-1)>>s)!=1 \\ Jeppe Stig Nielsen, Jun 27 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Luke W. Richards, Mar 28 2018
STATUS
approved