login
A301906
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.
11
1, 1, 2, 1, 1, 4, 1, 2, 1, 8, 1, 2, 3, 1, 16, 1, 3, 2, 7, 1, 32, 1, 6, 2, 5, 16, 1, 64, 1, 10, 7, 8, 10, 43, 1, 128, 1, 21, 12, 40, 12, 26, 117, 1, 256, 1, 42, 27, 96, 92, 64, 65, 330, 1, 512, 1, 86, 62, 316, 320, 532, 196, 170, 935, 1, 1024, 1, 179, 160, 1078, 1588, 1934, 1999, 864, 442
OFFSET
1,3
COMMENTS
Table starts
...1.1...1...1....1.....1......1.......1........1..........1...........1
...2.1...2...2....3.....6.....10......21.......42.........86.........179
...4.1...3...2....2.....7.....12......27.......62........160.........387
...8.1...7...5....8....40.....96.....316.....1078.......3831.......13331
..16.1..16..10...12....92....320....1588.....7234......34477......171770
..32.1..43..26...64...532...1934...14860....86638.....568382.....4029337
..64.1.117..65..196..1999...8781..104732...770376....7398173....75183520
.128.1.330.170..864.10150..49709..952467..8263384..113474387..1620307756
.256.1.935.442.3236.46226.253844.7931939.81388360.1622304450.32687652025
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = 3*a(n-1) +a(n-2) -4*a(n-3)
k=4: a(n) = 3*a(n-1) -3*a(n-3) +a(n-4)
k=5: a(n) = 4*a(n-1) +5*a(n-2) -20*a(n-3) -4*a(n-4) +16*a(n-5) for n>6
k=6: [order 20] for n>21
k=7: [order 30] for n>33
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
n=3: [order 30] for n>31
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..0..1
..1..1..1..1. .1..1..1..0. .1..1..1..0. .1..1..1..0. .0..1..0..1
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..0..1
..1..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..0..1
..0..1..1..0. .0..1..1..0. .0..1..1..0. .1..1..1..0. .0..1..0..1
CROSSREFS
Column 1 is A000079(n-1).
Column 4 is A245306(n-1).
Row 2 is A240513(n-3).
Sequence in context: A226174 A208482 A199856 * A302150 A193554 A372701
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 28 2018
STATUS
approved