The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301848 Number of states generated by morphism during inflation stage of paper-folding sequence. 4
 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(0), a(1), ... is the fixed point of inflation morphism 1 -> 1 3, 2 -> 2 3, 3 -> 1 4, 4 -> 2 4, starting from state 1; b(0), b(1), ... is the image of a(n) under encoding morphism 1 -> 0, 2 -> 1, 3 -> 0, 4 -> 1. The number-wall over the rationals (signed Hankel determinants) is apparently free from zeros. REFERENCES Jean-Paul Allouche and Jeffrey O. Shallit, Automatic sequences, Cambridge, 2003, sect. 5.1.6. LINKS W. F. Lunnon, The number-wall algorithm: an LFSR cookbook, Journal of Integer Sequences 4 (2001), no. 1, 01.1.1. FORMULA a(n) = b(2n) - 2 b(2n-1) + 3, where b(n) denotes A038189(n). MAPLE A301848 := proc(n)     A038189(2*n)-2*A038189(2*n-1)+3 ; end proc: seq(A301848(n), n=0..100) ; # R. J. Mathar, Mar 30 2018 PROG (Magma) function b (n)   if n eq 0 then return 0; // alternatively,  return 1;   else while IsEven(n) do n := n div 2; end while; end if;   return n div 2 mod 2; end function; function a (n)   return b(n+n) - 2*b(n+n-1) + 3; end function;   nlo := 0; nhi := 32;   [a(n) : n in [nlo..nhi] ]; CROSSREFS Cf. A038189, A301849, A301850. Sequence in context: A094603 A165595 A213181 * A325610 A278536 A143825 Adjacent sequences:  A301845 A301846 A301847 * A301849 A301850 A301851 KEYWORD nonn AUTHOR Fred Lunnon, Mar 27 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 19:59 EDT 2021. Contains 345365 sequences. (Running on oeis4.)