login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301848
Number of states generated by morphism during inflation stage of paper-folding sequence.
4
1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 4, 1, 3, 2, 4, 2, 3, 1, 4, 2, 3, 2, 4, 2, 3, 1, 4, 1
OFFSET
0,2
COMMENTS
a(0), a(1), ... is the fixed point of inflation morphism 1 -> 1 3, 2 -> 2 3, 3 -> 1 4, 4 -> 2 4, starting from state 1;
b(0), b(1), ... is the image of a(n) under encoding morphism 1 -> 0, 2 -> 1, 3 -> 0, 4 -> 1.
The number-wall over the rationals (signed Hankel determinants) is apparently free from zeros.
REFERENCES
Jean-Paul Allouche and Jeffrey O. Shallit, Automatic sequences, Cambridge, 2003, sect. 5.1.6.
LINKS
W. F. Lunnon, The number-wall algorithm: an LFSR cookbook, Journal of Integer Sequences 4 (2001), no. 1, 01.1.1.
FORMULA
a(n) = b(2n) - 2 b(2n-1) + 3, where b(n) denotes A038189(n).
MAPLE
A301848 := proc(n)
A038189(2*n)-2*A038189(2*n-1)+3 ;
end proc:
seq(A301848(n), n=0..100) ; # R. J. Mathar, Mar 30 2018
MATHEMATICA
b[n_] := If[n == 0, 0, BitGet[n, IntegerExponent[n, 2] + 1]];
a[n_] := b[2n] - 2 b[2n-1] + 3;
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 30 2023 *)
PROG
(Magma)
function b (n)
if n eq 0 then return 0; // alternatively, return 1;
else while IsEven(n) do n := n div 2; end while; end if;
return n div 2 mod 2; end function;
function a (n)
return b(n+n) - 2*b(n+n-1) + 3; end function;
nlo := 0; nhi := 32;
[a(n) : n in [nlo..nhi] ];
CROSSREFS
KEYWORD
nonn
AUTHOR
Fred Lunnon, Mar 27 2018
STATUS
approved