login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301736
Numerator of cumulative weight of certain D-forests on n nodes.
1
1, 0, 1, 1, 7, 11, 281, 449, 20719, 75403, 3066769, 1234967, 821856311, 2223747371, 273942958057, 1238828105761, 12489209350781, 511763293389419, 13479473195610647, 356089289643109313, 78908612931754624999, 373825489242185563339, 83933730864756536571961
OFFSET
0,5
LINKS
Bernhard Gittenberger, Emma Yu Jin, Michael Wallner, On the shape of random Pólya structures, arXiv|1707.02144 [math.CO], 2017; Discrete Math., 341 (2018), 896-911.
EXAMPLE
1, 0, 1/2, 1/3, 7/8, 11/30, 281/144, 449/840, ...
MATHEMATICA
TreeGf[nn_] := Module[{A}, A = Table[1, nn]; For[n = 1, n <= nn-1, n++, A[[n+1]] = 1/n Sum[Sum[d A[[d]], {d, Divisors[k]}] A[[n-k+1]], {k, 1, n}] ]; A];
fracts[nn_] := Module[{v, t}, v = Table[0, nn+1]; t = TreeGf[nn]; v[[1]]=1; For[n=2, n <= nn, n++, v[[n+1]] = Sum[v[[n-i+1]] Sum[If[d != i, d t[[d]], 0], {d, Divisors[i]}], {i, 2, n}]/n]; v];
fracts[22] // Numerator (* Jean-François Alcover, Aug 05 2018, after Andrew Howroyd *)
PROG
(PARI) \\ See reference for recursion; TreeGf is gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
fracts(n)={my(v=vector(n+1), t=Vec(TreeGf(n))); v[1]=1; for(n=2, n, v[n+1]=sum(i=2, n, v[n-i+1]*sumdiv(i, d, if(d<>i, d*t[d])))/n); v}
seq(n)={apply(f->numerator(f), fracts(n))} \\ Andrew Howroyd, Jun 21 2018
CROSSREFS
Cf. A301737.
Sequence in context: A322950 A201120 A164328 * A096952 A143602 A177999
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Apr 02 2018
EXTENSIONS
a(8)-a(22) from Andrew Howroyd, Jun 21 2018
STATUS
approved