login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143602
E.g.f. satisfies: A(x) = exp( A(x)*Series_Reversion[x*A(x)] ).
0
1, 1, 1, 7, -11, 741, -14129, 521263, -20968359, 1063764649, -63316356389, 4408796480331, -352958649497387, 32158017135672013, -3302679619545572265, 379346145007147112551, -48397471256028983134799, 6817654800019973404119633, -1054828080584161260522077645
OFFSET
0,4
FORMULA
E.g.f. satisfies: A(x*A(x)) = exp(x*A(x*A(x))) = LambertW(-x)/(-x).
EXAMPLE
A(x) = 1 + x + x^2/2! + 7*x^3/3! - 11*x^4/4! + 741*x^5/5! - 14129*x^6/6! +-...
A(x*A(x)) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! +...
LambertW(-x)/(-x) = 1 + x + 3^1*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! +...
log(A(x)) = x + 2*x^3/2! - 9*x^4/3! + 172*x^5/4! - 3205*x^6/5! +-...
Series_Reversion[x*A(x)] = x - x^2 + 3*x^3/2! - 22*x^4/3! + 281*x^5/4! - 5396*x^6/5! +-...
PROG
(PARI) {a(n)=local(A=1); for(i=0, n, A=exp(A*serreverse(x*A+x^2*O(x^n)))); n!*polcoeff(A, n)}
CROSSREFS
Cf. A000272.
Sequence in context: A164328 A301736 A096952 * A177999 A293220 A126710
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 26 2008
STATUS
approved