login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301280
Nearest integer to variance of n-th row of Pascal's triangle.
4
0, 0, 0, 1, 5, 16, 56, 198, 699, 2490, 8943, 32355, 117800, 431316, 1587207, 5867244, 21777203, 81127591, 303240041, 1136914129, 4274441613, 16111746161, 60873695892, 230495640009, 874525192278, 3324270554675, 12658405644200, 48280298159610
OFFSET
0,5
LINKS
Simon Demers, Taylor's Law Holds for Finite OEIS Integer Sequences and Binomial Coefficients, American Statistician, Volume 72, 2018 - Issue 4.
FORMULA
From Robert Israel, Jul 18 2019: (Start)
The variance is binomial(2*n,n)/n - 4^n/(n*(n+1)).
a(n) ~ 4^n/(sqrt(Pi)*n^(3/2)). (End)
EXAMPLE
The first few variances are 0, 0, 1/3, 4/3, 47/10, 244/15, 1186/21, 1384/7, 25147/36, 112028/45, 98374/11, 1067720/33, 1531401/13, 39249768/91, 166656772/105, 88008656/15, 2961699667/136, 12412521388/153, 51854046982/171, 108006842264/95, 448816369361/105, ...
MAPLE
M:=70;
m := n -> 2^n/(n+1);
m1:=[seq(m(n), n=0..M)]; # A084623/A000265
v := n -> (1/n) * add((binomial(n, i) - m(n))^2, i=0..n );
v1:= [0, 0, seq(v(n), n=2..60)]; # A301278/A301279 and A301280
# Alternative:
f:= n -> round((binomial(2*n, n)-4^n/(n+1))/n): f(0):=0:
map(f, [$0..60]); # Robert Israel, Jul 18 2019
CROSSREFS
Mean and variance of n-th row of Pascal's triangle: A084623/A000265, A301278/A301279, A054650.
Sequence in context: A363449 A268225 A120343 * A153366 A057553 A226973
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 18 2018
STATUS
approved