

A300959


Number of prime factors of the nth LucasCarmichael number.


1



3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 5, 4, 3, 3, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 5, 4, 4, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 5, 3, 4, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The number of prime factors is always >= 3.


LINKS

Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..10000


FORMULA

a(n) = A001221(A006972(n)).


PROG

(PARI) islc(n)=my(f=factor(n)); for(i=1, #f[, 1], if((n+1)%(f[i, 1]+1)  f[i, 2]>1, return(0))); #f[, 1]>1; \\ from A006972
lista(nn) = for (n=1, nn, if (islc(n), print1(omega(n), ", "))); \\ Michel Marcus, Mar 17 2018


CROSSREFS

Cf. A006972 (LucasCarmichael numbers).
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (LucasCarmichael numbers with 3 to 8 prime factors).
Cf. A216928 (Least LucasCarmichael number with n prime factors).
Sequence in context: A303168 A162844 A115787 * A259581 A105592 A210745
Adjacent sequences: A300956 A300957 A300958 * A300960 A300961 A300962


KEYWORD

nonn


AUTHOR

Tim Johannes Ohrtmann, Mar 17 2018


STATUS

approved



