login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300793
a(n) is the n-th derivative of arcsinh(1/x) at x=1 times (-2)^n/sqrt(2) for n >= 1.
1
1, 3, 13, 75, 561, 5355, 63405, 894915, 14511105, 263544435, 5284255725, 116065424475, 2778006733425, 72093290744475, 2017526711525325, 60547198550713875, 1938662110170410625, 65941564342927147875, 2374177441960545346125, 90211614359319635056875
OFFSET
1,2
FORMULA
Proved (see links): a(n) = (-1)^n*Sum_{j=0..n-1} b(j,n) for any n >= 1 where {b(j,n)} for n=1,2,... and j any integer is a recursive sequence given by b(0,1)=-1, b(j,n)=0 if j < 0 or j >= n and b(j,n+1) = b(j,n)*(2j-n) + b(j-1,n)*(2j-3n-1) for all n >= 1 and 0 <= j <= n.
Empirical (by Martin Rubey on mathoverflow, see links): a(1)=1, a(2)=3, a(3)=13, a(n) = 4(n-2)^2*(n-3)*a(n-3) - 2(3n-5)*(n-2)*a(n-2) + (4n-5)*a(n-1) for all n >= 4.
a(n) = n!*[x^n]((log(sqrt((1-2*x)^2 + 1) + 1) - log(1 - 2*x))/sqrt(2)). - Peter Luschny, Apr 06 2018
MAPLE
a := n -> subs(x=1, (-2)^n/sqrt(2)*diff(arcsinh(1/x), x$n)):
seq(a(n), n=1..20); # Peter Luschny, Mar 14 2018
A300793_list := proc(len) local egf, ser, coef;
egf := (log(sqrt((1-2*x)^2+1)+1)-log(1-2*x))/sqrt(2):
ser := series(egf, x, len+1): coef := n -> round(n!*coeff(ser, x, n)):
seq(coef(n), n=1..len) end: A300793_list(20); # Peter Luschny, Apr 06 2018
MATHEMATICA
(* Mathematica program from Bálint Koczor, TU Munich *)
alist[max_] := Module[{prevRow, buf, makeNewRow, ind},
(*definitions*)
ind[j_] := j + 1; (*to shift the index*)
makeNewRow[prevRow_, k_] := Table[
If[ind[j] > k, 0, prevRow[[ind[j]]]*(2 j - k)] +
If[j == 0, 0, prevRow[[ind[j] - 1]]*(2 j - 3 k - 1)]
, {j, 0, k}]; (*this is the recursion formula*)
prevRow = {-1}; (*initialize*)
buf = Table[
If[k == 0, -1, 0], {k, 0, max}]; (*this will hold the resulting integers*)
Do[
prevRow = makeNewRow[prevRow, k];
buf[[k + 1]] = Total@prevRow; , (*sums up the previous row*)
{k, 1, max}];
Return@(buf*Table[(-1)^n, {n, 1, max + 1}]);
];
alist[19]
CROSSREFS
Sequence in context: A000670 A032036 A305535 * A222427 A026072 A063646
KEYWORD
nonn
AUTHOR
Frederik vom Ende, Mar 13 2018
STATUS
approved