login
A300727
Decimal expansion of the total harmonic distortion (THD) of the sawtooth signal filtered by a 2nd-order low-pass filter.
4
1, 8, 1, 1, 4, 1, 6, 1, 3, 7, 9, 3, 8, 2, 9, 0, 0, 4, 0, 8, 0, 2, 1, 8, 1, 0, 5, 5, 8, 1, 3, 0, 1, 6, 7, 8, 4, 4, 3, 8, 9, 2, 8, 3, 5, 1, 5, 9, 5, 6, 3, 5, 3, 8, 9, 1, 1, 5, 5, 6, 0, 6, 0, 8, 6, 2, 6, 4, 1, 4, 1, 9, 5, 6, 3, 6, 7, 9, 2, 4, 7, 3, 1, 6, 9, 8, 0, 7, 9, 1, 7, 9, 2, 7, 4, 4, 1, 6, 2, 1, 2, 2, 4
OFFSET
0,2
COMMENTS
See formula (34) in Blagouchine & Moreau link.
LINKS
I. V. Blagouchine and E. Moreau, Analytic Method for the Computation of the Total Harmonic Distortion by the Cauchy Method of Residues. IEEE Trans. Commun., vol. 59, no. 9, pp. 2478-2491, 2011. PDF file.
FORMULA
Equals sqrt(Pi*(cot(Pi/sqrt(2))*coth(Pi/sqrt(2))^2-cot(Pi/sqrt(2))^2*coth(Pi/sqrt(2))-cot(Pi/sqrt(2))-coth(Pi/sqrt(2)))/((cot(Pi/sqrt(2))^2+coth(Pi/sqrt(2))^2)*sqrt(2))+(1/3)*Pi^2-1).
EXAMPLE
0.1811416137938290040802181055813016784438928351595635...
MAPLE
evalf(sqrt(Pi*(cot(Pi/sqrt(2))*coth(Pi/sqrt(2))^2-cot(Pi/sqrt(2))^2*coth(Pi/sqrt(2))-cot(Pi/sqrt(2))-coth(Pi/sqrt(2)))/((cot(Pi/sqrt(2))^2+coth(Pi/sqrt(2))^2)*sqrt(2))+(1/3)*Pi^2-1), 120)
MATHEMATICA
RealDigits[Sqrt[Pi*(Cot[Pi/Sqrt[2]]*Coth[Pi/Sqrt[2]]^2-Cot[Pi/Sqrt[2]]^2*Coth[Pi/Sqrt[2]]-Cot[Pi/Sqrt[2]]-Coth[Pi/Sqrt[2]])/((Cot[Pi/Sqrt[2]]^2+Coth[Pi/Sqrt[2]]^2)*Sqrt[2])+(1/3)*Pi^2-1], 10, 120][[1]]
PROG
(MATLAB) format long; sqrt(sqrt(pi*(cot(pi/sqrt(2))*coth(pi/sqrt(2))^2-cot(pi/sqrt(2))^2*coth(pi/sqrt(2))-cot(pi/sqrt(2))-coth(pi/sqrt(2)))/((cot(pi/sqrt(2))^2+coth(pi/sqrt(2))^2)*sqrt(2))+(1/3)*pi^2-1))
(PARI) s2=sqrt(2);
A=Pi/s2;
B=1+2/(exp(2*A)-1)
C=1/tan(A);
sqrt(Pi*(B^2*C-B*C^2-C-B)/((C^2+B^2)*s2) + Pi^2/3 - 1) \\ Charles R Greathouse IV, Mar 11 2018
CROSSREFS
Cf. A247719 (Pi/sqrt(2)), A300690, A300713, A300714.
Sequence in context: A133421 A128881 A154015 * A246722 A197492 A153621
KEYWORD
nonn,cons
AUTHOR
STATUS
approved