|
|
A300507
|
|
Define the set of generalized Syracuse sequences starting with a positive odd integer 2*n+1=x(1) then if x(i) is odd and prime set x(i+1)=2*x(i)+1, if x(i) is odd not prime set x(i+1)=3*x(i)+1 and if x(i) is even then set x(i+1)=x(i)/2. a(n) is the index i when x(i) reaches 1 or 1163.
|
|
0
|
|
|
4, 446, 444, 445, 448, 443, 236, 444, 441, 508, 8, 442, 511, 235, 506, 443, 514, 440, 509, 507, 233, 934, 445, 441, 512, 512, 438, 234, 937, 505, 889, 442, 515, 480, 241, 439, 239, 508, 510, 506, 892, 232, 10, 933, 503, 427, 444, 440, 461, 457, 478, 420, 509
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
For n<40 the sequences reach 1, for n=40 the sequence reaches 1163 for x(889) and recover 1163 for x(889+931) a cycle of 961 values.
|
|
LINKS
|
|
|
EXAMPLE
|
For n=1 after 135 tripling(+1), 47 doubling(+1) and 263 halfing x(446)=1, so a(1)=446.
|
|
PROG
|
(PARI) f(x) = if (x % 2, if (isprime(x), 2*x+1, 3*x+1), x/2);
a(n) = {x = f(2*n+1); nb = 2; while (! ((x == 1) || (x == 1163)), x = f(x); nb++); nb; } \\ Michel Marcus, Mar 07 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|