login
A300458
a(n) = [x^n] Product_{k=1..n} 1/(1 + x^k)^(n^k).
2
1, -1, -1, -10, 11, 374, 9792, 183847, 3469427, 65038049, 1195396233, 19667738452, 189089161562, -6219720781782, -606316892131934, -35104997710496175, -1795953382595105853, -88223902016631657740, -4283800987347611165184, -207864171877269042498096, -10102590396625592962089500
OFFSET
0,4
EXAMPLE
The table of coefficients of x^k in expansion of Product_{k>=1} 1/(1 + x^k)^(n^k) begins:
n = 0: (1), 0, 0, 0, 0, 0, ...
n = 1: 1, (-1), 0, -1, 1, -1, ...
n = 2: 1, -2, (-1), -4, 3, -2, ...
n = 3: 1, -3, -3, (-10), 6, 15, ...
n = 4: 1, -4, -6, -20, (11), 104, ...
n = 5: 1, -5, -10, -35, 20, (374), ...
MATHEMATICA
Table[SeriesCoefficient[Product[1/(1 + x^k)^(n^k), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Mar 06 2018
STATUS
approved