OFFSET
0,2
COMMENTS
Equivalent to nonnegative walks from (0,0) to (7*n,0) with step set [1,3], [1,-4].
LINKS
M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]
Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
FORMULA
G.f. satisfies: f = f^35*t^5 - f^31*t^4 + f^30*t^4 - f^29*t^4 + 5*f^28*t^4 - f^25*t^3 + f^24*t^3 + 3*f^23*t^3 - 4*f^22*t^3 + 10*f^21*t^3 + f^19*t^2 - f^18*t^2 + 5*f^17*t^2 + 3*f^16*t^2 - 6*f^15*t^2 + 10*f^14*t^2 + f^13*t - f^12*t + 3*f^10*t + f^9*t - 4*f^8*t + 5*f^7*t + 1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/7)*binomial(7*n, 3*n)*x^n/n ) - Bizley.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/7)*binomial(7*n-7*k, 3*n-3*k)*a(k) for n >= 1. (End)
EXAMPLE
For n=1, the possible walks are EEEENNN, EEENENN, EENEENN, EEENNEN, EENENEN.
MATHEMATICA
m = 17; f = 0; Do[f = f^35*t^5 - f^31*t^4 + f^30*t^4 - f^29*t^4 + 5*f^28*t^4 - f^25*t^3 + f^24*t^3 + 3*f^23*t^3 - 4*f^22*t^3 + 10*f^21*t^3 + f^19*t^2 - f^18*t^2 + 5*f^17*t^2 + 3*f^16*t^2 - 6*f^15*t^2 + 10*f^14*t^2 + f^13*t - f^12*t + 3*f^10*t + f^9*t - 4*f^8*t + 5*f^7*t + 1 + O[t]^m, {m}]; CoefficientList[f, t] (* Jean-François Alcover, Feb 18 2019 *)
CROSSREFS
KEYWORD
nonn,walk,easy
AUTHOR
Bryan T. Ek, Mar 05 2018
STATUS
approved