

A300334


Primes of a056240type 2.


3



211, 541, 631, 673, 1693, 1801, 2879, 3181, 3271, 3299, 3343, 3571, 3943, 4177, 4441, 4561, 4751, 4783, 4813, 4861, 5147, 5381, 5431, 5501, 5779, 6029, 6197, 6421, 6469, 6521, 6599, 6637, 6883, 7103, 7321, 7369, 7477, 7573, 7603, 7789, 7901, 7963, 8419, 8443, 8641, 8923, 9091, 9587, 9643, 9733, 9781, 9871, 10513
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Prime(r) has a056240type k if A295185(prime(r))=prime(rk)*A056240(prime(r)prime(rk)).
This sequence lists primes having a056240type k=2, each having form ~2(g1,g2) where g1 is the first gap below prime(r), and g2 is the second (notation explained in A295185). The majority of primes appear to be of a056240type 1.


LINKS



EXAMPLE

211 is included because the smallest composite number whose sum of prime factors (with repetition)=211 is 6501=197*33, a multiple of the second prime below 211, not the first. 211~2(12,2) is the smallest prime to have this property. Likewise 541~2(18,2), 1693~2(24,2), 2879~2(18,4), etc.


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



