Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 02 2018 22:45:20
%S 1,2,2,3,2,4,2,5,6,4,2,7,2,4,8,9,2,10,2,7,11,4,2,12,13,4,14,7,2,15,2,
%T 16,8,4,8,17,2,4,11,12,2,18,2,7,19,4,2,20,21,22,8,7,2,23,24,12,11,4,2,
%U 25,2,4,26,27,8,15,2,7,8,15,2,28,2,4,29,7,8,18,2,20,30,4,2,31,8,4,8,12,2,32,8,7,11,4,8,33,2,34,19,35,2,15,2,12,36
%N Filter sequence combining A009195(n) and A046523(n), i.e., gcd(n,phi(n)) and the prime signature of n.
%C Restricted growth sequence transform of P(A009195(n), A046523(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.
%H Antti Karttunen, <a href="/A300240/b300240.txt">Table of n, a(n) for n = 1..65537</a>
%e a(6) = a(10) (= 4) because both 6 and 10 are nonsquare semiprimes, and A009195(6) = A009195(10) = 2.
%o (PARI)
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
%o A009195(n) = gcd(n, eulerphi(n));
%o A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
%o Aux300240(n) = (1/2)*(2 + ((A046523(n)+A009195(n))^2) - A046523(n) - 3*A009195(n));
%o write_to_bfile(1,rgs_transform(vector(65537,n,Aux300240(n))),"b300240.txt");
%Y Cf. A009195, A046523.
%Y Cf. also A300230, A300241, A300242, A300243.
%K nonn
%O 1,2
%A _Antti Karttunen_, Mar 02 2018