login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300240
Filter sequence combining A009195(n) and A046523(n), i.e., gcd(n,phi(n)) and the prime signature of n.
5
1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 8, 9, 2, 10, 2, 7, 11, 4, 2, 12, 13, 4, 14, 7, 2, 15, 2, 16, 8, 4, 8, 17, 2, 4, 11, 12, 2, 18, 2, 7, 19, 4, 2, 20, 21, 22, 8, 7, 2, 23, 24, 12, 11, 4, 2, 25, 2, 4, 26, 27, 8, 15, 2, 7, 8, 15, 2, 28, 2, 4, 29, 7, 8, 18, 2, 20, 30, 4, 2, 31, 8, 4, 8, 12, 2, 32, 8, 7, 11, 4, 8, 33, 2, 34, 19, 35, 2, 15, 2, 12, 36
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of P(A009195(n), A046523(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.
LINKS
EXAMPLE
a(6) = a(10) (= 4) because both 6 and 10 are nonsquare semiprimes, and A009195(6) = A009195(10) = 2.
PROG
(PARI)
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
A009195(n) = gcd(n, eulerphi(n));
A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
Aux300240(n) = (1/2)*(2 + ((A046523(n)+A009195(n))^2) - A046523(n) - 3*A009195(n));
write_to_bfile(1, rgs_transform(vector(65537, n, Aux300240(n))), "b300240.txt");
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 02 2018
STATUS
approved