login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300057
Coefficient of z^(3*n) in the expansion of (1 + 9*z + 9*z^2 + z^3)^(2*n).
2
1, 164, 47148, 15454820, 5361965980, 1919987703504, 701459496193236, 259867456921970040, 97260263038893462300, 36686877800581349096240, 13924013746979490475444528, 5311128944356277793155688612, 2034235241375650519750351973188
OFFSET
0,2
LINKS
FORMULA
a(n) = 1/(2*Pi)*Integral_{0..2*Pi}(12*cos^2(x)*sin(x) + 20*sin^3(x))^(2*n) dx.
a(n) = Sum_{k1=0..2*n} Sum_{k2=0..2*n} binomial(2*n,k1)*binomial(2*n,k2)*binomial(2*n,3*n-k1-k2)*((4-sqrt(15))^(2*n-k1))*((4+sqrt(15))^(2*n-k2)).
a(n) = (c1/c3)*a(n-1)+(c2/c3)*a(n-2); with a(0)=1; a(1)=164; and
c1=16*(n-1/2)*(-230+2259*n-3933*n^2+1863*n^3);
c2=1036800*(n-1)*(n-3/2)*(n-1/2)*(n-1/9);
c3=81*n*(n-2/3)*(n-1/3)*(n-10/9).
From Wolfdieter Lang, Apr 06 2018: (Start)
a(n) = 4^(2*n)*(2/Pi)*Integral_{0..Pi/2} sin(x)^(2*n)*(3 + 2*sin(x)^2)^(2*n) dx. With the binomial formula and integrals over even powers of sin(x) this becomes
a(n) = 6^(2*n)*Sum_{k=0..2*n} binomial(2*n, k)*binomial(2*(n+k), n+k)*(1/6)^k = 6^(2*n)*binomial(2*n, n)*hypergeometric([-2*n, n+1/2], [n+1], -2/3). (End)
a(n) ~ 2^(4*n) * 5^(2*n + 1/2) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 18 2018
MATHEMATICA
c1=16*(n-1/2)*(-230+2259*n-3933*n^2+1863*n^3); c2=1036800*(n-1)*(n-3/2)*(n-1/2)*(n-1/9); c3=81*n*(n-2/3)*(n-1/3)*(n-10/9); a[0]=1; a[1]=164; a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2], n->n0]
b[NN_]:=Expand[Total[Flatten[#]]&/@Table[Binomial[2*n, k2]*Binomial[2*n, k1]*Binomial[2*n, 3*n-k1-k2]*(4 + Sqrt[15])^(2*n-k1)*(4-Sqrt[15])^(2*n-k2), {n, 0, NN}, {k1, 0, 2*n}, {k2, 0, 2*n}]]
({#, SameQ[Coefficient[(1+9*z+9*z^2+z^3)^(2*#), z, 3*#]&/@Range[0, 10], #], SameQ[a/@Range[0, 10], #]}&@b[10])[[1]]
Table[SeriesCoefficient[(1 + 9*z + 9*z^2 + z^3)^(2*n), {z, 0, 3*n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 18 2018 *)
PROG
(PARI) a(n) = polcoeff((1 + 9*z + 9*z^2 + z^3)^(2*n), 3*n); \\ Michel Marcus, Mar 06 2018
(GAP) List([0..15], n->6^(2*n)Sum([0..2*n], k->Binomial(2*n, k)*Binomial(2*(n+k), n+k)*(1/6)^k)); # Muniru A Asiru, Apr 07 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Bradley Klee, Feb 23 2018
STATUS
approved