login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300045
E.g.f. A(x) satisfies: A(x) = 1 + Integral A(4*x)^(1/2) dx.
2
1, 1, 2, 12, 312, 37008, 18540576, 37740977856, 308640640553856, 10108585206574665984, 1324770391254109154738688, 694534718011481157528342678528, 1456529592308544539096599988734998528, 12218220833015817164679410893774265189240832, 409975142427307559856983482397439860805077724831744, 55025920673752295414026066407280263168555174442226420465664
OFFSET
0,3
COMMENTS
Compare to: G(x) = 1 + Integral G(2*x)^(1/2) dx holds when G(x) = exp(x).
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 312*x^4/4! + 37008*x^5/5! + 18540576*x^6/6! + 37740977856*x^7/7! + 308640640553856*x^8/8! + 10108585206574665984*x^9/9! + ...
Related series.
A(4*x)^(1/2) = 1 + 2*x + 12*x^2/2! + 312*x^3/3! + 37008*x^4/4! + 18540576*x^5/5! + 37740977856*x^6/6! + ... + a(n+1)*x^n/n! + ...
A(2*x)^(1/2) = 1 + x + 3*x^2/2! + 39*x^3/3! + 2313*x^4/4! + 579393*x^5/5! + 589702779*x^6/6! + ... + A300046(n)*x^n/n! + ...
log(A(x)) = x + x^2/2! + 8*x^3/3! + 270*x^4/4! + 35472*x^5/5! + 18318288*x^6/6! + ... + A300047(n)*x^n/n! + ...
PROG
(PARI) {a(n) = my(A=1+x); for(i=1, n, A = 1 + intformal(subst(A, x, 4*x)^(1/2) +x*O(x^n) )); n!*polcoeff(A, n)}
for(n=0, 16, print1(a(n), ", "))
CROSSREFS
Sequence in context: A122767 A260321 A094047 * A091472 A156518 A012727
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2018
STATUS
approved