login
A299937
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 4, 1, 2, 18, 18, 2, 3, 64, 130, 64, 3, 5, 236, 902, 902, 236, 5, 8, 888, 6243, 11212, 6243, 888, 8, 13, 3336, 43375, 144072, 144072, 43375, 3336, 13, 21, 12512, 300901, 1858165, 3441754, 1858165, 300901, 12512, 21, 34, 46928, 2088188
OFFSET
1,5
COMMENTS
Table starts
..0.....1........1..........2.............3...............5.................8
..1.....4.......18.........64...........236.............888..............3336
..1....18......130........902..........6243...........43375............300901
..2....64......902......11212........144072.........1858165..........23924290
..3...236.....6243.....144072.......3441754........82403876........1969988474
..5...888....43375....1858165......82403876......3664429516......162678451993
..8..3336...300901...23924290....1969988474....162678451993....13409569414628
.13.12512..2088188..308062375...47097894761...7222553677769..1105467648686714
.21.46928.14490885.3966828615.1126027901118.320673103163046.91135851756212849
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +4*a(n-3) for n>4
k=3: [order 10] for n>11
k=4: [order 33] for n>34
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..0. .0..0..1..0. .0..0..1..1. .0..0..1..0. .0..0..1..1
..1..0..1..0. .0..1..0..1. .1..0..1..1. .1..1..1..0. .0..1..1..0
..0..1..1..1. .1..0..0..0. .1..1..0..0. .1..0..0..1. .1..0..0..0
..1..0..1..1. .1..1..1..0. .0..0..1..1. .1..0..0..1. .1..0..1..0
..0..1..0..0. .0..0..0..0. .0..1..0..0. .1..1..0..1. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A231950(n-1).
Sequence in context: A298280 A299142 A299373 * A299067 A299728 A299839
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 22 2018
STATUS
approved