login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299067
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 4, 1, 2, 18, 18, 2, 3, 64, 141, 64, 3, 5, 236, 993, 993, 236, 5, 8, 888, 7330, 13765, 7330, 888, 8, 13, 3336, 54106, 196699, 196699, 54106, 3336, 13, 21, 12512, 398654, 2827609, 5491159, 2827609, 398654, 12512, 21, 34, 46928, 2937795
OFFSET
1,5
COMMENTS
Table starts
..0.....1........1..........2.............3................5..................8
..1.....4.......18.........64...........236..............888...............3336
..1....18......141........993..........7330............54106.............398654
..2....64......993......13765........196699..........2827609...........40585250
..3...236.....7330.....196699.......5491159........154373324.........4331069485
..5...888....54106....2827609.....154373324.......8486867094.......465531179253
..8..3336...398654...40585250....4331069485.....465531179253.....49918355153525
.13.12512..2937795..582407760..121483918174...25530821979245...5351692051251075
.21.46928.21650600.8358259950.3407860943824.1400307860660375.573807870327017333
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +4*a(n-3) for n>4
k=3: [order 9] for n>10
k=4: [order 22] for n>23
k=5: [order 62] for n>64
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..0..1..1. .0..0..0..1. .0..0..0..0. .0..0..0..0
..0..1..1..0. .0..0..1..1. .0..1..1..1. .1..0..0..1. .1..1..0..0
..0..0..0..1. .1..0..0..0. .0..1..1..0. .0..1..0..1. .0..1..1..0
..0..1..0..1. .1..1..1..0. .0..1..0..1. .0..1..1..0. .0..1..1..0
..1..1..1..1. .0..0..1..0. .0..1..1..0. .0..0..0..0. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A231950(n-1).
Sequence in context: A299142 A299373 A299937 * A299728 A299839 A265178
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 01 2018
STATUS
approved