login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299828
Coefficients in expansion of (q*j(q))^(-1/6) where j(q) is the elliptic modular invariant (A000521).
2
1, -124, 21002, -4016872, 809288755, -167876361244, 35484423032510, -7599636959859112, 1643483711343623769, -358082233874320665600, 78482787856608918842534, -17284562763499415545585456, 3821876235203430873578026310
OFFSET
0,2
FORMULA
Convolution inverse of A289299.
a(n) ~ (-1)^n * c * exp(Pi*sqrt(3)*n) / sqrt(n), where c = 0.585669299547026632252908661746743778408088234535945502931... = sqrt(2) * exp(Pi/(2 * sqrt(3))) * Pi^(3/2) / (sqrt(3) * Gamma(1/3)^3). - Vaclav Kotesovec, Feb 20 2018, updated Mar 06 2018
a(n) * A289299(n) ~ -exp(2*sqrt(3)*Pi*n) / (2*Pi*n^2). - Vaclav Kotesovec, Feb 20 2018
MATHEMATICA
CoefficientList[Series[(2 * QPochhammer[-1, x])^4 / (65536 + x*QPochhammer[-1, x]^24)^(1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 20 2018 *)
CROSSREFS
Sequence in context: A206077 A097842 A206189 * A280905 A146516 A146546
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 20 2018
STATUS
approved