OFFSET
1,2
COMMENTS
a(n) == 1 (mod n).
Also, a(n) equals the size of the set { f(x) mod Phi_n(x) }, where f(x) runs over the polynomials of degree at most n-1 with nonnegative integer coefficients such that f(1)=n (i.e. the coefficients sum to n), Phi_n(x) is the n-th cyclotomic polynomial. In particular, for prime n, Phi_n(x)=1+x+...+x^(n-1) and thus all f(x) mod Phi_n(x) are distinct, implying that a(n)=binomial(2*n-1,n). - Max Alekseyev, Feb 20 2018
FORMULA
For prime p, a(p) = binomial(2*p-1,p). - Conjectured by Robert Israel, Feb 18 2018; proved by Max Alekseyev, Feb 20 2018
a(n) = A299807(n,n). - Max Alekseyev, Feb 25 2018
EXAMPLE
From M. F. Hasler, Feb 18 2018: (Start)
For n=2, the n-th roots of unity are U[2] = {-1, 1}, and taking x, y in this set, we can get x + y = -2, 0 or 2.
For n=3, the n-th roots of unity are U[3] = {1, w, w^2} where w = exp(2i*Pi/3) = -1/2 + i sqrt(3)/2, and taking x, y, z in this set, we can get x + y + z to be any of the 10 distinct values { 3, 2 + w, 2 + w^2, 1 + 2w, 1 + 2w^2, 0, w - 1, w^2 - 1, 3w, 3w^2 }. (End)
MAPLE
nexti:= proc(i, N) local ip, j, k;
ip:= i;
for k from N to 1 by -1 while i[k]=N-1 do od;
if k=0 then return NULL fi;
ip[k]:= ip[k]+1;
for j from k+1 to N do ip[j]:= ip[k] od;
ip
end proc:
f:= proc(N) local S, i, P, z;
S:= {}:
i:= <(0$N)>:
P:= numtheory:-cyclotomic(N, z);
while i <> NULL do
S:= S union {rem(add(z^i[k], k=1..N), P, z)};
i:= nexti(i, N);
od;
nops(S);
end proc:
seq(f(N), N=1..10); # Robert Israel, Feb 18 2018
MATHEMATICA
a[n_] := (t = Table[Exp[2 k Pi I/n], {k, 0, n - 1}]; b[0] = 1; iter = Table[{b[j], b[j - 1], n}, {j, 1, n}]; msets = Table[Array[b, n], Evaluate[Sequence @@ iter]]; tot = Total /@ (t[[#]] & /@ Flatten[msets, n - 1]) // N; u = Union[tot, SameTest -> (Chop[Abs[#1 - #2]] == 0 &)]; u // Length); Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Feb 19 2018 *)
PROG
(PARI) a(n, U=vector(n, k, bestappr(exp(2*Pi/n*k*I), 5*2^n)), S=[])={forvec(i=vector(n, k, [1, n]), S=setunion(S, [vecsum(vecextract(U, i))])); #S} \\ Not very efficient for n > 8. - M. F. Hasler, Feb 18 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
David W. Wilson, Feb 18 2018
EXTENSIONS
a(1) through a(11) from Robert Israel, Feb 18 2018
a(12)-a(13) from Chai Wah Wu, Feb 20 2018
a(14)-a(20) from Max Alekseyev, Feb 22 2018
STATUS
approved