login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299754
Number of distinct sums of n complex n-th roots of 1.
2
1, 3, 10, 25, 126, 127, 1716, 2241, 18469, 15231, 352716, 36973, 5200300, 1799995, 30333601, 24331777, 1166803110, 12247363, 17672631900, 723276561
OFFSET
1,2
COMMENTS
a(n) == 1 (mod n).
Also, a(n) equals the size of the set { f(x) mod Phi_n(x) }, where f(x) runs over the polynomials of degree at most n-1 with nonnegative integer coefficients such that f(1)=n (i.e. the coefficients sum to n), Phi_n(x) is the n-th cyclotomic polynomial. In particular, for prime n, Phi_n(x)=1+x+...+x^(n-1) and thus all f(x) mod Phi_n(x) are distinct, implying that a(n)=binomial(2*n-1,n). - Max Alekseyev, Feb 20 2018
FORMULA
For prime p, a(p) = binomial(2*p-1,p). - Conjectured by Robert Israel, Feb 18 2018; proved by Max Alekseyev, Feb 20 2018
a(n) = A299807(n,n). - Max Alekseyev, Feb 25 2018
EXAMPLE
From M. F. Hasler, Feb 18 2018: (Start)
For n=2, the n-th roots of unity are U[2] = {-1, 1}, and taking x, y in this set, we can get x + y = -2, 0 or 2.
For n=3, the n-th roots of unity are U[3] = {1, w, w^2} where w = exp(2i*Pi/3) = -1/2 + i sqrt(3)/2, and taking x, y, z in this set, we can get x + y + z to be any of the 10 distinct values { 3, 2 + w, 2 + w^2, 1 + 2w, 1 + 2w^2, 0, w - 1, w^2 - 1, 3w, 3w^2 }. (End)
MAPLE
nexti:= proc(i, N) local ip, j, k;
ip:= i;
for k from N to 1 by -1 while i[k]=N-1 do od;
if k=0 then return NULL fi;
ip[k]:= ip[k]+1;
for j from k+1 to N do ip[j]:= ip[k] od;
ip
end proc:
f:= proc(N) local S, i, P, z;
S:= {}:
i:= <(0$N)>:
P:= numtheory:-cyclotomic(N, z);
while i <> NULL do
S:= S union {rem(add(z^i[k], k=1..N), P, z)};
i:= nexti(i, N);
od;
nops(S);
end proc:
seq(f(N), N=1..10); # Robert Israel, Feb 18 2018
MATHEMATICA
a[n_] := (t = Table[Exp[2 k Pi I/n], {k, 0, n - 1}]; b[0] = 1; iter = Table[{b[j], b[j - 1], n}, {j, 1, n}]; msets = Table[Array[b, n], Evaluate[Sequence @@ iter]]; tot = Total /@ (t[[#]] & /@ Flatten[msets, n - 1]) // N; u = Union[tot, SameTest -> (Chop[Abs[#1 - #2]] == 0 &)]; u // Length); Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* Jean-François Alcover, Feb 19 2018 *)
PROG
(PARI) a(n, U=vector(n, k, bestappr(exp(2*Pi/n*k*I), 5*2^n)), S=[])={forvec(i=vector(n, k, [1, n]), S=setunion(S, [vecsum(vecextract(U, i))])); #S} \\ Not very efficient for n > 8. - M. F. Hasler, Feb 18 2018
KEYWORD
nonn
AUTHOR
David W. Wilson, Feb 18 2018
EXTENSIONS
a(1) through a(11) from Robert Israel, Feb 18 2018
a(12)-a(13) from Chai Wah Wu, Feb 20 2018
a(14)-a(20) from Max Alekseyev, Feb 22 2018
STATUS
approved