login
A299598
Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5, 7 or 8 king-move adjacent elements, with upper left element zero.
1
0, 6, 27, 130, 1241, 8825, 72751, 589816, 4803248, 39358999, 321999354, 2638098994, 21610813691, 177055481680, 1450660059735, 11885674778667, 97384006706676, 797906117503448, 6537576734601907, 53565114537762363, 438881605139973564
OFFSET
1,2
COMMENTS
Column 4 of A299602.
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) +17*a(n-2) -181*a(n-3) -358*a(n-4) +1849*a(n-5) +3395*a(n-6) -9594*a(n-7) -17373*a(n-8) +37703*a(n-9) +64155*a(n-10) -140777*a(n-11) -207284*a(n-12) +241911*a(n-13) +503248*a(n-14) -180355*a(n-15) -407315*a(n-16) +345228*a(n-17) -190109*a(n-18) -358668*a(n-19) +1352578*a(n-20) -134032*a(n-21) -796584*a(n-22) -5373391*a(n-23) +3257874*a(n-24) +6698760*a(n-25) -588489*a(n-26) -18575462*a(n-27) -9379891*a(n-28) +12753098*a(n-29) +19365970*a(n-30) +7121900*a(n-31) -19148219*a(n-32) -10185393*a(n-33) -466148*a(n-34) +6297580*a(n-35) +4336922*a(n-36) -4382384*a(n-37) +153878*a(n-38) -45486*a(n-39) -455623*a(n-40) +174413*a(n-41) -619409*a(n-42) +332546*a(n-43) +199486*a(n-44) -122028*a(n-45) +14512*a(n-46) -2012*a(n-47) +204*a(n-48)
EXAMPLE
Some solutions for n=5
..0..0..0..0. .0..1..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..1. .0..1..1..0
..0..0..0..1. .0..1..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1
..0..0..1..1. .1..1..1..1. .0..0..1..0. .0..0..0..0. .1..1..1..1
..0..1..1..1. .1..1..1..1. .0..1..1..1. .0..0..0..0. .1..1..1..1
CROSSREFS
Cf. A299602.
Sequence in context: A038176 A104745 A184279 * A343492 A323928 A360082
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 14 2018
STATUS
approved