login
A299369
Number of n X 4 0..1 arrays with every element equal to 1, 2, 3, 4, 5 or 8 king-move adjacent elements, with upper left element zero.
1
2, 64, 876, 10692, 136106, 1736688, 22129704, 281996650, 3593547434, 45793495306, 583557765480, 7436419337146, 94764114200356, 1207602336265708, 15388772567116042, 196102900773830988, 2498987331532782804
OFFSET
1,1
COMMENTS
Column 4 of A299373.
LINKS
FORMULA
Empirical: a(n) = 14*a(n-1) -11*a(n-2) -60*a(n-3) -45*a(n-4) -86*a(n-5) +217*a(n-6) +1113*a(n-7) +2167*a(n-8) -7569*a(n-9) +495*a(n-10) +7012*a(n-11) +2755*a(n-12) -16094*a(n-13) -918*a(n-14) +21559*a(n-15) +1334*a(n-16) -12014*a(n-17) -10046*a(n-18) +6016*a(n-19) +7512*a(n-20) +2397*a(n-21) -1838*a(n-22) -2359*a(n-23) -1700*a(n-24) -102*a(n-25) +36*a(n-26) -87*a(n-27) +44*a(n-28) +130*a(n-29) +67*a(n-30) +14*a(n-31) for n>32.
EXAMPLE
Some solutions for n=5
..0..1..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1. .0..0..0..0
..1..0..0..0. .1..1..1..1. .0..0..0..1. .0..0..0..1. .0..0..0..0
..0..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..0..1. .0..0..0..0
..0..1..1..1. .1..1..1..1. .1..1..1..0. .1..1..1..0. .1..1..1..1
..0..1..1..1. .0..0..0..0. .1..0..0..0. .1..1..1..1. .1..0..0..1
CROSSREFS
Cf. A299373.
Sequence in context: A120121 A274656 A298276 * A299138 A299933 A299063
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 08 2018
STATUS
approved