login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274656
Denominators of coefficients of z^n for the expansion of Fricke's hypergeometric function F_1(1/2,1/2;z).
2
1, 2, 64, 768, 98304, 655360, 10485760, 293601280, 30064771072, 1082331758592, 86586540687360, 60473139527680, 34832528367943680, 362258295026614272, 644014746713980928, 2576058986855923712, 5275768805080931762176, 32613843522318487257088
OFFSET
0,2
COMMENTS
For the numerators see A274655.
For the denominators of the coefficients of z^n/n! for the expansion of F_1(1/2,1/2;z) see A274654.
See the main entry A274653 (with A274654) for the definition of Fricke's hypergeometric function F_1(a,b;z) with the recurrence and details on F_1(1/2,1/2;z).
REFERENCES
See A274653.
FORMULA
a(n) = denominator(R(n)), where the rationals (in lowest terms) are R(n) = [z^n]F_1(1/2,1/2;z), and the recurrence for R(n) = r(n)/n! is obtained from the one given for r(n) in A274653.
R(n) = ((2*n-1)/(2*n))^2*R(n-1) + 2*C(n)/(n*(2*n-1)), n >= 1, R(0) = 0, with C(n) = ((2*n)!)^2 / (n!^4*2^(4*n)).
EXAMPLE
CROSSREFS
Cf. A274653.
Sequence in context: A226397 A264481 A120121 * A298276 A299369 A299138
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 07 2016
STATUS
approved