The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299338 Expansion of 1 / ((1 - x)^7*(1 + x)^6). 4
1, 1, 7, 7, 28, 28, 84, 84, 210, 210, 462, 462, 924, 924, 1716, 1716, 3003, 3003, 5005, 5005, 8008, 8008, 12376, 12376, 18564, 18564, 27132, 27132, 38760, 38760, 54264, 54264, 74613, 74613, 100947, 100947, 134596, 134596, 177100, 177100, 230230, 230230 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Same as A000579 but with repeated terms.
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-15,15,20,-20,-15,15,6,-6,-1,1).
FORMULA
a(n) = (2*n^6 + 84*n^5 + 1400*n^4 + 11760*n^3 + 51968*n^2 + 112896*n + 92160) / 92160 for n even.
a(n) = (2*n^6 + 72*n^5 + 1010*n^4 + 6960*n^3 + 24278*n^2 + 39048*n + 20790) / 92160 for n odd.
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13) for n>12.
MATHEMATICA
CoefficientList[Series[1/((1-x)^7(1+x)^6), {x, 0, 50}], x] (* or *) LinearRecurrence[ {1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1}, {1, 1, 7, 7, 28, 28, 84, 84, 210, 210, 462, 462, 924}, 50] (* Harvey P. Dale, Oct 09 2018 *)
PROG
(PARI) Vec(1 / ((1 - x)^7*(1 + x)^6) + O(x^40))
CROSSREFS
Sequence in context: A111217 A339339 A198341 * A341246 A246039 A186142
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Feb 07 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 10:58 EDT 2024. Contains 373407 sequences. (Running on oeis4.)