login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299034
a(n) = n! * [x^n] Product_{k>=1} 1/(1 - x^k)^(n/k).
5
1, 1, 8, 93, 1544, 32615, 843264, 25739539, 906373376, 36163950849, 1612483625600, 79458277381901, 4288069172500992, 251520785449249927, 15932801526165085184, 1084003570689331039875, 78835487923639854792704, 6103175938145968656408641, 501114006272655771562911744
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * [x^n] exp(n*Sum_{k>=1} d(k)*x^k/k), where d(k) is the number of divisors of k (A000005).
a(n) ~ c * d^n * n^n, where d = 1.7257974131308983723949107467... and c = 0.693704376971941705824592525... - Vaclav Kotesovec, Sep 08 2018
EXAMPLE
The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^(n/k) begins:
n = 0: (1), 0, 0, 0, 0, 0, 0, ...
n = 1: 1, (1), 3, 11, 59, 339, 2629, ...
n = 2: 1, 2, (8), 40, 260, 1928, 17056, ...
n = 3: 1, 3, 15, (93), 711, 6237, 62901, ...
n = 4: 1, 4, 24, 176, (1544), 15456, 174784, ...
n = 5: 1, 5, 35, 295, 2915, (32615), 407725, ...
n = 6: 1, 6, 48, 456, 5004, 61704, (843264), ...
MATHEMATICA
Table[n! SeriesCoefficient[Product[1/(1 - x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 18}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 01 2018
STATUS
approved