login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299033
a(n) = n! * [x^n] Product_{k>=1} (1 - x^k)^(n/k).
3
1, -1, 0, 15, -136, 885, -4896, 43085, -787200, 7775271, 326355200, -22138191801, 781498160640, -18924340012435, 239123351330304, 5915023788331125, -568462201562300416, 25327272129182225295, -795994018378027868160, 15538852668590468027711
OFFSET
0,4
FORMULA
a(n) = n! * [x^n] exp(-n*Sum_{k>=1} d(k)*x^k/k), where d(k) is the number of divisors of k (A000005).
EXAMPLE
The table of coefficients of x^k in expansion of e.g.f. Product_{k>=1} (1 - x^k)^(n/k) begins:
n = 0: (1), 0, 0, 0, 0, 0, 0, ...
n = 1: 1, (-1), -1, 1, -1, 41, -131, ...
n = 2: 1, -2, (0), 8, -4, 72, -704, ...
n = 3: 1, -3, 3, (15), -45, 63, -1539, ...
n = 4: 1, -4, 8, 16, (-136), 224, -1856, ...
n = 5: 1, -5, 15, 5, -265, (885), -2075, ...
n = 6: 1, -6, 24, -24, -396, 2376, (-4896), ...
MATHEMATICA
Table[n! SeriesCoefficient[Product[(1 - x^k)^(n/k), {k, 1, n}], {x, 0, n}], {n, 0, 19}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 01 2018
STATUS
approved