|
|
A298997
|
|
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3, 4 or 6 king-move adjacent elements, with upper left element zero.
|
|
2
|
|
|
8, 121, 1073, 10150, 97462, 932318, 8918662, 85379274, 817325435, 7824101240, 74900669973, 717032783698, 6864239941309, 65712258531277, 629072225933512, 6022192925933026, 57651265263937577, 551903354684601177
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 4 of A299001.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 9*a(n-1) +8*a(n-2) +38*a(n-3) -490*a(n-4) -1002*a(n-5) -1061*a(n-6) +8079*a(n-7) +23108*a(n-8) +19262*a(n-9) -30209*a(n-10) -172074*a(n-11) -127690*a(n-12) -120925*a(n-13) +524664*a(n-14) +337275*a(n-15) +702573*a(n-16) -827151*a(n-17) -958523*a(n-18) -1581927*a(n-19) -619058*a(n-20) +414995*a(n-21) +389515*a(n-22) +901857*a(n-23) -168659*a(n-24) +31470*a(n-25) -151466*a(n-26) -27657*a(n-27) +129562*a(n-28) -14754*a(n-29) +50563*a(n-30) -12466*a(n-31) -14531*a(n-32) +10488*a(n-33) -5321*a(n-34) +799*a(n-35) -120*a(n-36) +12*a(n-37) for n>38
|
|
EXAMPLE
|
Some solutions for n=5
..0..0..1..1. .0..0..1..0. .0..1..1..1. .0..1..0..1. .0..0..0..1
..0..0..0..1. .1..1..1..0. .1..1..0..1. .1..0..0..1. .1..0..1..1
..0..1..0..1. .1..0..0..1. .0..1..0..1. .1..0..1..0. .1..0..1..0
..0..1..1..0. .1..0..1..1. .0..1..0..0. .0..1..1..0. .1..1..0..1
..0..0..1..0. .0..1..1..0. .0..0..1..0. .1..0..0..0. .0..0..1..0
|
|
CROSSREFS
|
Cf. A299001.
Sequence in context: A214426 A281833 A299077 * A299664 A243942 A196651
Adjacent sequences: A298994 A298995 A298996 * A298998 A298999 A299000
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Jan 31 2018
|
|
STATUS
|
approved
|
|
|
|