login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298873
Solution (c(n)) of the system of 3 complementary equations in Comments.
4
3, 16, 27, 43, 60, 79, 100, 126, 153, 182, 213, 249, 289, 330, 373, 418, 465, 514, 565, 624, 683, 744, 807, 872, 939, 1008, 1082, 1157, 1234, 1313, 1394, 1477, 1562, 1652, 1746, 1841, 1938, 2037, 2138, 2241, 2346, 2453, 2562, 2673, 2786, 2904, 3023, 3147
OFFSET
0,1
COMMENTS
Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + b(n-1);
c(n) = a(n) + 2 b(n);
where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers.
LINKS
EXAMPLE
n: 0 1 2 3 4 5 6 7 8 9
a: 1 4 5 7 8 9 10 12 13 14
b: 2 6 11 18 26 35 45 57 70 84
c: 3 16 27 43 60 30 79 100 126 153
MATHEMATICA
z = 400;
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
a = {1}; b = {2}; c = {3};
Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]],
AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + Last[b]]],
AppendTo[c, Last[a] + 2 Last[b]]}, {z}];
Take[a, 100] (* A298871 *)
Take[b, 100] (* A298872 *)
Take[c, 100] (* A298873 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 18 2018
STATUS
approved