|
|
A298723
|
|
Number of nX4 0..1 arrays with every element equal to 0, 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.
|
|
1
|
|
|
1, 18, 15, 34, 77, 230, 712, 2167, 6694, 20775, 64197, 200062, 624696, 1949420, 6084096, 19000957, 59343184, 185364275, 579116320, 1809395723, 5653433396, 17664869660, 55197920461, 172481319644, 538973897693, 1684218210917
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) -9*a(n-2) -a(n-3) +2*a(n-4) -2*a(n-5) +15*a(n-6) +26*a(n-7) -157*a(n-8) +466*a(n-9) -220*a(n-10) -444*a(n-11) +96*a(n-12) -157*a(n-13) -652*a(n-14) +146*a(n-15) +1984*a(n-16) +130*a(n-17) +2025*a(n-18) -2473*a(n-19) +6365*a(n-20) -4168*a(n-21) -11764*a(n-22) +5390*a(n-23) -9469*a(n-24) +8003*a(n-25) -14173*a(n-26) +26192*a(n-27) -10436*a(n-28) +27101*a(n-29) -15251*a(n-30) +9559*a(n-31) +14483*a(n-32) -50379*a(n-33) +34809*a(n-34) -58786*a(n-35) +60997*a(n-36) -73488*a(n-37) +83309*a(n-38) -55321*a(n-39) +43987*a(n-40) -38228*a(n-41) +37989*a(n-42) -14291*a(n-43) +2903*a(n-44) -12735*a(n-45) +11717*a(n-46) -10534*a(n-47) +5177*a(n-48) +1621*a(n-49) +1470*a(n-50) -2283*a(n-51) -323*a(n-52) -752*a(n-53) +511*a(n-54) +22*a(n-55) +60*a(n-56) -80*a(n-57) +16*a(n-58) for n>60
|
|
EXAMPLE
|
Some solutions for n=5
..0..0..0..0. .0..0..0..0. .0..1..1..0. .0..0..1..0. .0..0..0..0
..0..1..1..0. .0..1..1..0. .0..0..1..1. .0..1..1..1. .0..0..0..0
..1..0..1..0. .0..1..0..1. .1..1..0..1. .1..0..0..0. .0..0..0..0
..1..0..0..1. .1..0..0..1. .0..1..0..0. .0..1..1..0. .1..1..1..1
..1..1..1..1. .1..1..1..1. .1..1..1..0. .0..0..1..1. .1..1..1..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|