login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298727
T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 5 or 8 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 7, 7, 1, 1, 18, 5, 18, 1, 1, 31, 15, 15, 31, 1, 1, 65, 21, 34, 21, 65, 1, 1, 130, 57, 77, 77, 57, 130, 1, 1, 253, 119, 230, 336, 230, 119, 253, 1, 1, 519, 285, 712, 1041, 1041, 712, 285, 519, 1, 1, 1018, 725, 2167, 3676, 4001, 3676, 2167, 725, 1018, 1
OFFSET
1,5
COMMENTS
Table starts
.1...1...1....1.....1......1.......1........1........1.........1..........1
.1...5...7...18....31.....65.....130......253......519......1018.......2055
.1...7...5...15....21.....57.....119......285......725......1833.......4807
.1..18..15...34....77....230.....712.....2167.....6694.....20775......64197
.1..31..21...77...336...1041....3676....12970....45311....162322.....581460
.1..65..57..230..1041...4001...16320....67159...281930...1196239....5097819
.1.130.119..712..3676..16320...76983...380106..1892587...9597169...48598454
.1.253.285.2167.12970..67159..380106..2232433.13202628..79480110..477560387
.1.519.725.6694.45311.281930.1892587.13202628.92349689.659941442.4710349603
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4) for n>5
k=3: [order 17] for n>18
k=4: [order 58] for n>60
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..1. .0..1..0..1. .0..0..1..1. .0..0..0..0. .0..0..0..0
..1..0..0..1. .0..0..0..0. .0..1..0..1. .0..1..1..0. .0..0..0..0
..1..1..1..0. .1..0..1..0. .1..1..0..1. .0..1..0..1. .0..0..0..0
..0..0..0..0. .1..1..1..0. .0..1..0..1. .1..0..0..1. .0..0..0..0
..1..0..1..0. .0..1..0..0. .0..0..1..1. .1..1..1..1. .0..0..0..0
CROSSREFS
Column 2 is A297937.
Sequence in context: A131404 A297943 A298554 * A299561 A298382 A299249
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 25 2018
STATUS
approved