login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298691
G.f. A(x) satisfies: A(x) = Sum_{n>=0} binomial( n*(n+1)/2, n) * x^n / A(x)^( n*(n-1)/2 ).
3
1, 1, 3, 17, 144, 1647, 24037, 429483, 9088749, 221942779, 6130801041, 188708846991, 6398116247554, 236786117903526, 9495515095867953, 410104221125229354, 18977504682428845671, 936731766873748776822, 49127713187418767376060, 2728178479576867266738579, 159924801506251429348644138, 9868564065320443974954599471
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 17*x^3 + 144*x^4 + 1647*x^5 + 24037*x^6 + 429483*x^7 + 9088749*x^8 + 221942779*x^9 + 6130801041*x^10 + 188708846991*x^11 + 6398116247554*x^12 + 236786117903526*x^13 + 9495515095867953*x^14 + 410104221125229354*x^15 + ...
such that
A(x) = 1 + C(1,1)*x + C(3,2)*x^2/A(x) + C(6,3)*x^3/A(x)^3 + C(10,4)*x^4/A(x)^6 + C(15,5)*x^5/A(x)^10 + C(21,6)*x^6/A(x)^15 + C(28,7)*x^7/A(x)^21 + ...
more explicitly,
A(x) = 1 + x + 3*x^2/A(x) + 20*x^3/A(x)^3 + 210*x^4/A(x)^6 + 3003*x^5/A(x)^10 + 54264*x^6/A(x)^15 + 1184040*x^7/A(x)^21 + 30260340*x^8/A(x)^28 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = Vec(sum(m=0, #A, binomial(m*(m+1)/2, m) * x^m/Ser(A)^(m*(m-1)/2) ))); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2018
STATUS
approved