|
|
A298562
|
|
Quantitative (polygonal) Helly numbers for the integer lattice Z^2.
|
|
2
|
|
|
4, 6, 6, 6, 8, 7, 8, 9, 8, 8, 10, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 11, 11, 12, 12, 12, 13, 12, 12, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n) = g(Z^2,n) is the maximum integer k > 0 such that there exists a lattice polygon containing n+k lattice points with exactly k vertices.
|
|
LINKS
|
Wouter Castryck, Homepage. See the accompanying files for the above-referenced paper.
|
|
EXAMPLE
|
a(18) = 11 (so this sequence differs from A322345), attained only by the following polygon (No. 3736 in the corresponding list in Castryck's file) with 11 vertices, 1 non-vertex boundary lattice point, and genus (number of internal lattice points) 17: [(-2, -1), (-1, -2), (1, -2), (3, -1), (4, 0), (4, 1), (3, 2), (1, 3), (0, 3), (-1, 2), (-2, 0)].
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|