login
A298528
Decimal expansion of lim_{n->oo} ((n+1)*g - s(0) - s(1) - ... - s(n)), where g = 2.22287022972104..., s(n) = (s(n - 1) + e)^(1/2), s(0) = 1.
3
1, 6, 0, 4, 3, 3, 2, 6, 4, 1, 7, 2, 4, 5, 7, 7, 3, 0, 0, 5, 3, 9, 6, 5, 9, 5, 4, 7, 2, 1, 3, 8, 2, 6, 8, 9, 1, 7, 6, 3, 8, 0, 8, 8, 1, 1, 2, 8, 3, 2, 3, 0, 8, 2, 9, 2, 5, 4, 1, 4, 7, 0, 9, 2, 8, 9, 7, 9, 2, 2, 2, 8, 4, 5, 6, 3, 4, 9, 9, 7, 4, 6, 7, 4, 6, 6
OFFSET
1,2
COMMENTS
Limit_{n->oo} s(n) = g = positive zero of x^2 - x - e. See A298512 for a guide to related sequences.
EXAMPLE
1.604332641724577300539659547213826891...
MATHEMATICA
s[0] = 1; d = E; p = 1/2;
g = (x /. NSolve[x^(1/p) - x - d == 0, x, 200])[[2]]
s[n_] := s[n] = (s[n - 1] + d)^p
N[Table[s[n], {n, 0, 30}]]
s = N[Sum[g - s[n], {n, 0, 200}], 150 ];
RealDigits[s, 10][[1]] (* A298528 *)
CROSSREFS
Sequence in context: A196878 A209835 A344973 * A341325 A021947 A073010
KEYWORD
nonn,easy,cons,changed
AUTHOR
Clark Kimberling, Feb 12 2018
STATUS
approved