login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298508
T(n,k) = Number of n X k 0..1 arrays with every element equal to 0, 2, 3, 4 or 7 king-move adjacent elements, with upper left element zero.
7
1, 1, 1, 1, 5, 1, 1, 12, 12, 1, 1, 37, 10, 37, 1, 1, 104, 50, 50, 104, 1, 1, 301, 148, 269, 148, 301, 1, 1, 864, 493, 1297, 1297, 493, 864, 1, 1, 2485, 2093, 6063, 10969, 6063, 2093, 2485, 1, 1, 7144, 8047, 35908, 86979, 86979, 35908, 8047, 7144, 1, 1, 20541, 31951
OFFSET
1,5
COMMENTS
Table starts
.1....1.....1.......1........1..........1............1.............1
.1....5....12......37......104........301..........864..........2485
.1...12....10......50......148........493.........2093..........8047
.1...37....50.....269.....1297.......6063........35908........203345
.1..104...148....1297....10969......86979.......795788.......7018070
.1..301...493....6063....86979....1091801.....16092678.....225171354
.1..864..2093...35908...795788...16092678....364785216....7961618817
.1.2485..8047..203345..7018070..225171354...7961618817..269830709761
.1.7144.31951.1189795.62968846.3223061387.177727031452.9389112358693
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 5*a(n-2) +8*a(n-3) +4*a(n-4)
k=3: [order 16] for n>18
k=4: [order 58] for n>61
EXAMPLE
Some solutions for n=5, k=4
..0..1..1..0. .0..1..0..1. .0..1..1..0. .0..0..0..0. .0..1..1..0
..1..1..1..1. .0..0..0..0. .1..1..1..1. .1..0..0..1. .1..1..1..1
..1..1..1..1. .1..1..1..1. .1..1..1..1. .0..0..0..0. .0..0..0..0
..0..1..1..0. .0..1..1..0. .0..1..1..0. .1..1..1..1. .1..0..0..1
..0..0..0..0. .1..1..1..1. .1..1..1..1. .1..0..1..1. .0..0..0..0
CROSSREFS
Column 2 is A297909.
Sequence in context: A110522 A146987 A297915 * A298328 A299221 A300035
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 20 2018
STATUS
approved