login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
1

%I #4 Jan 19 2018 08:51:37

%S 0,6,30,219,2013,17443,158594,1441287,13145287,120045930,1096641326,

%T 10020505046,91567796475,836780632957,7646916779234,69881717942041,

%U 638619004480617,5836070553261507,53333416849369472,487391957394071310

%N Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.

%C Column 4 of A298461.

%H R. H. Hardin, <a href="/A298457/b298457.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 7*a(n-1) +40*a(n-2) -123*a(n-3) -680*a(n-4) +347*a(n-5) +4732*a(n-6) +2213*a(n-7) -12148*a(n-8) -9856*a(n-9) +13303*a(n-10) +9511*a(n-11) -16969*a(n-12) -15182*a(n-13) +4983*a(n-14) -83456*a(n-15) +656*a(n-16) +68*a(n-17) +84770*a(n-18) -229109*a(n-19) +383194*a(n-20) -225637*a(n-21) -22337*a(n-22) +333076*a(n-23) -535303*a(n-24) +416644*a(n-25) -342719*a(n-26) +207071*a(n-27) -34879*a(n-28) -18892*a(n-29) +22620*a(n-30) -25205*a(n-31) +25909*a(n-32) -15562*a(n-33) +8687*a(n-34) -6879*a(n-35) +3110*a(n-36) -492*a(n-37) for n>38

%e Some solutions for n=7

%e ..0..0..1..1. .0..0..1..1. .0..0..0..1. .0..0..1..1. .0..0..0..1

%e ..0..0..1..0. .0..1..0..1. .0..0..1..1. .1..0..0..1. .0..0..1..1

%e ..0..1..0..0. .1..0..1..1. .0..1..0..1. .1..1..0..1. .1..1..0..1

%e ..1..1..1..1. .1..1..1..1. .1..1..1..0. .1..0..1..1. .1..0..0..1

%e ..0..0..1..1. .0..1..1..0. .0..1..0..0. .0..1..0..0. .1..1..0..1

%e ..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..1..0. .0..1..1..1

%e ..0..1..1..1. .0..0..0..0. .0..0..0..1. .0..0..1..1. .0..0..1..1

%Y Cf. A298461.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 19 2018