login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298457 Number of nX4 0..1 arrays with every element equal to 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero. 1
0, 6, 30, 219, 2013, 17443, 158594, 1441287, 13145287, 120045930, 1096641326, 10020505046, 91567796475, 836780632957, 7646916779234, 69881717942041, 638619004480617, 5836070553261507, 53333416849369472, 487391957394071310 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Column 4 of A298461.
LINKS
FORMULA
Empirical: a(n) = 7*a(n-1) +40*a(n-2) -123*a(n-3) -680*a(n-4) +347*a(n-5) +4732*a(n-6) +2213*a(n-7) -12148*a(n-8) -9856*a(n-9) +13303*a(n-10) +9511*a(n-11) -16969*a(n-12) -15182*a(n-13) +4983*a(n-14) -83456*a(n-15) +656*a(n-16) +68*a(n-17) +84770*a(n-18) -229109*a(n-19) +383194*a(n-20) -225637*a(n-21) -22337*a(n-22) +333076*a(n-23) -535303*a(n-24) +416644*a(n-25) -342719*a(n-26) +207071*a(n-27) -34879*a(n-28) -18892*a(n-29) +22620*a(n-30) -25205*a(n-31) +25909*a(n-32) -15562*a(n-33) +8687*a(n-34) -6879*a(n-35) +3110*a(n-36) -492*a(n-37) for n>38
EXAMPLE
Some solutions for n=7
..0..0..1..1. .0..0..1..1. .0..0..0..1. .0..0..1..1. .0..0..0..1
..0..0..1..0. .0..1..0..1. .0..0..1..1. .1..0..0..1. .0..0..1..1
..0..1..0..0. .1..0..1..1. .0..1..0..1. .1..1..0..1. .1..1..0..1
..1..1..1..1. .1..1..1..1. .1..1..1..0. .1..0..1..1. .1..0..0..1
..0..0..1..1. .0..1..1..0. .0..1..0..0. .0..1..0..0. .1..1..0..1
..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..1..0. .0..1..1..1
..0..1..1..1. .0..0..0..0. .0..0..0..1. .0..0..1..1. .0..0..1..1
CROSSREFS
Cf. A298461.
Sequence in context: A073087 A214822 A295497 * A208942 A209070 A259820
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 19 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 05:50 EDT 2024. Contains 373540 sequences. (Running on oeis4.)