login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298329
Number of ordered ways of writing n^2 as a sum of n squares of nonnegative integers.
13
1, 1, 2, 6, 5, 90, 582, 4081, 45678, 378049, 3844532, 39039539, 395170118, 4589810849, 53154371025, 660113986997, 8584476248237, 113555197832758, 1572878837435750, 22259911738401660, 324143769099772448, 4869443438412466557, 74837370448784241452, 1182177603062005007658
OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..100 (first 81 terms from Seiichi Manyama)
FORMULA
a(n) = [x^(n^2)] (Sum_{k>=0} x^(k^2))^n.
EXAMPLE
a(3) = 6 because we have [9, 0, 0], [4, 4, 1], [4, 1, 4], [1, 4, 4], [0, 9, 0] and [0, 0, 9].
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1/t!, (s->
`if`(s*t<n, 0, add(b(n-s*j, i-1, t-j)/j!, j=0..min(t, n/s))))(i^2))
end:
a:= n-> n!*b(n^2, n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 28 2018
MATHEMATICA
Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/2^n, {x, 0, n^2}], {n, 0, 23}]
PROG
(PARI) {a(n) = polcoeff((sum(k=0, n, x^(k^2)+x*O(x^(n^2))))^n, n^2)} \\ Seiichi Manyama, Oct 28 2018
CROSSREFS
[x^(n^b)] (Sum_{k>=0} x^(k^b))^n: A088218 (b=1), this sequence (b=2), A298671 (b=3).
Sequence in context: A175350 A085057 A069113 * A009462 A346712 A111119
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 17 2018
STATUS
approved