login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298107
Expansion of (eta(q^4) * eta(q^5) / (eta(q) * eta(q^20)))^2 in powers of q.
2
1, 2, 5, 10, 18, 30, 51, 80, 124, 190, 281, 410, 592, 840, 1178, 1640, 2253, 3070, 4154, 5570, 7422, 9830, 12932, 16920, 22028, 28520, 36761, 47180, 60280, 76720, 97278, 122880, 154693, 194110, 242776, 302740, 376424, 466710, 577114, 711800, 875707, 1074790
OFFSET
-1,2
LINKS
FORMULA
Euler transform of period 20 sequence [2, 2, 2, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = f(t) where q = exp(2 Pi i t).
G.f.: 1/x * Product_{k>0} ((1 - x^(4*k)) * (1 - x^(5*k)))^2 / ((1 - x^k) * (1 - x^(20*k)))^2.
a(n) = A058555(n) unless n=0. Convolution square of A058664.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2*5^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 21 2018
EXAMPLE
G.f. = q^-1 + 2 + 5*q + 10*q^2 + 18*q^3 + 30*q^4 + 51*q^5 + 80*q^6 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/q (QPochhammer[ q^4] QPochhammer[ q^5])^2 / (QPochhammer[ q] QPochhammer[ q^20])^2, {q, 0 , n}];
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^5 + A) / (eta(x + A) * eta(x^20 + A)))^2, n))};
CROSSREFS
Sequence in context: A104688 A117485 A084835 * A034350 A006327 A185721
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 12 2018
STATUS
approved